The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression.
نویسندگان
چکیده
The inflammatory response is a highly regulated physiological process that is critically important for homeostasis. A precise physiological control of inflammation allows a timely reaction to invading pathogens or to other insults without causing overreaction liable to damage the host. The cellular signaling pathways identified as important regulators of inflammation are the signal transduction cascades mediated by the nuclear factor-kappaB and the activator protein-1, which can both be modulated by glucocorticoids. Their use in the clinic includes treatment of rheumatoid arthritis, asthma, allograft rejection, and allergic skin diseases. Although glucocorticoids have been widely used since the late 1940s, the molecular mechanisms responsible for their antiinflammatory activity are still under investigation. The various molecular pathways proposed so far are discussed in more detail.
منابع مشابه
Protein-protein interactions and transcriptional antagonism between the subfamily of NGFI-B/Nur77 orphan nuclear receptors and glucocorticoid receptor.
Glucocorticoids (Gc) act through the glucocorticoid receptor (GR) to enhance or repress transcription of glucocorticoid-responsive genes depending on the promoter and cellular context. Repression of proopiomelanocortin (POMC) gene expression by Gc was proposed to use different mechanisms. We described the POMC promoter Nur response element (NurRE) as a target for Gc repression. NGFI-B (Nur77), ...
متن کاملDissociated glucocorticoids with anti-inflammatory potential repress interleukin-6 gene expression by a nuclear factor-kappaB-dependent mechanism.
Synthetic glucocorticoids (GCs) remain among the most effective agents for the management of chronic inflammatory diseases. However, major side effects severely limit their therapeutic use. Physiologic and therapeutic activities of GCs are mediated by a nuclear receptor belonging to a superfamily of ligand-inducible transcription factors that, in addition to directly regulating their cognate ge...
متن کاملRifampicin is not an activator of the glucocorticoid receptor in A549 human alveolar cells.
It has recently been reported that rifampicin activates the glucocorticoid receptor and acts as an immunosuppressive drug. Because rifampicin constitutes an essential part of pulmonary tuberculosis therapy, we have examined whether it triggers glucocorticoid-like effects in alveolar cells. We have used reporter gene assays to measure the trans-activating and trans-repressing capacity of the glu...
متن کاملDifferential hormone-dependent transcriptional activation and -repression by naturally occurring human glucocorticoid receptor variants.
The molecular mechanisms underlying primary glucocorticoid resistance or hypersensitivity are not well understood. Using transfected COS-1 cells as a model system, we studied gene regulation by naturally occurring mutants of the glucocorticoid receptor (GR) with single-point mutations in the regions encoding the ligand-binding domain or the N-terminal domain reflecting different phenotypic expr...
متن کاملMolecular interactions between glucocorticoids and long-acting beta2-agonists.
beta(2)-Adrenergic receptor agonists and glucocorticoids are the two most effective treatments for asthma, and used in combination they are more effective than either alone. Glucocorticoids mediate their anti-inflammatory effects through the action of activated glucocorticoid receptors (GRs), with the level of activity being related to the number of nuclear receptors. Glucocorticoids can upregu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrine reviews
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2003